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An ana lys i s  s f  r ad ia t ion  e f f e c t s  on l i qu id  propel lan ts  of i n t e r e s t  

a s  s tored propel lan ts  on in te rp lane tary  unmanned spacecraf t  has been completed. 

Radiation damage data  f o r  14 l i qu id  f u e l s  and 15 l iqu id  oxid izers  a r e  tabulated.  

Radiation l e v e l s  from externa l  space r ad ia t ion  a s  well  as representa t ive  R-, 

y-radioisotope and nuclear  r eac to r  power sources a r e  presented i n  parametric form. 

A summary is  given of propel lan t  r ad ia t ion  damage a s  a function of source type 

and mission. It w a s  concluded t h a t  v-heat sources such a s  238Pu or  2 4 4 C ~  

probably would not  r equ i r e  add i t iona l  sh ie ld ing  t o  p ro tec t  the  propel lan ts  even 

with l a r g e  power sources. 

l i k e l y  w i l l  r equ i r e  propel lan t  sh ie ld ing  on long missions. 

B-and ++-radioisotope sources and nuclear r eac to r  sources 



ANALYSIS OF RADIATION EFFECTS ON STORED 
LIQUID PROPEXLANTS ON SPACECRAFT 

WITH AUXILIARY RTG OR NUCLEAR POWER 
SOURCES 

INTRODUCTION 

It i s  advantageous t o  use high spec i f i c  impulse l i q u i d  propel lants  on 

long-term space probes using isotope o r  nuclear power sources fo r  aux i l i a ry  power 

because of the  r i g i d  weight and volume requirements on such missions. 

more d e f i n i t i v e  knowledge of environmental e f f e c t s  on the long-term s t o r a b i l i t y  of 

However, 

these propel lants  is des i rab le  so t ha t  design engineers may have reasonable assur- 

ance tha t  the s tored propel lant  system chosen fo r  a p a r t i c u l a r  mission w i l l  f u l f i l l  

i t s  function successful ly .  

The aim of t h i s  study was to  a sce r t a in  the s ta te-of- the-ar t  regarding 

rad ia t ion  e f f e c t s  data on l iqu id  propel lants  and t o  analyze the s u i t a b i l i t y  of using 

various propel lant  systems on space probes with d i f f e r e n t  aux i l i a ry  power sources. 

Within the scope of t h i s  study the following three  pr inc ipa l  tasks  have been performed: 

(1) A state-of- the-ar t  survey of ex i s t ing  knowledge of rad ia t ion  

e f f e c t s  on propel lants  of i n t e r e s t  has been performed and the 

r e s u l t s  tabulated, 

(2) The type and i n t e n s i t i e s  of rad ia t ion  l i k e l y  t o  be encountered from 

a va r i e ty  of isotope and nuclear power sources has been quant i ta t ive ly  

analyzed, and the rad ia t ion  dose to  propel lants  from external  space 

r ad ia t ion  has been estimatedj 

The re la t ionship  between the rad ia t ion  damage e f f e c t s  i n  the 

propel lants  and the rad ia t ion  dose l eve l s  t o  be a t ta ined  during 

(3) 
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the  var ious missions 

sented i n  parametric 

ava i lab le ,  

Recommendations a r e  made 

has been evaluated. 

form i n  a l l  cases  where s u f f i c i e n t  data  a r e  

The r e s u l t s  a r e  pre- 

concerning the  s u i t a b i l i t y  of a number of f u e l  

and oxid izer  compositions a s  passively s tored propel lan ts  on long term space missions. 

Those cases a r e  noted where experimental data  a r e  too sparse  t o  allow a reasonable 

judgment t o  be made concerning t h e i r  s u i t a b i l i t y .  

where the  evidence ind ica t e s  t h a t  an unusual problem may be present .  

Special  note  is taken of instances 

SUMMARY OF RADIATION EFFECTS ON LIQUID PROPELLANTS 

The primary aim of t h i s  phase of the  study was to  pinpoint the  na ture  and 

ser iausness  of p o t e n t i a l  problem areas  which may a r i s e  when l iqu id  propel lan ts  a r e  

s tored  i n  a r ad ia t ion  environment. 

ox id izers  (see Tables 1 and 2). 

No. W067-10(PR67-463). 

e f f e c t s  s tud ie s  reviewed. 

The survey covered a t o t a l  of 14 f u e l s  and 15 

Most of these propel lan ts  are l i s t e d  i n  RFQ 

The o the r s  were included i n  one o r  more of the r ad ia t ion  

An exhaustive l i t e r a t u r e  search w a s  ca r r i ed  out  covering a l l  r ad ia t ion  

e f f e c t s  da ta  ava i l ab le  f o r  a l l  the  propel lan ts  discussed i n  t h i s  study. Primary 

l i t e r a t u r e  sources include published l i t e r a t u r e ,  government repor t  l i t e r a t u r e  and 

supplementary information i n  the  REIC f i l e s .  I n  order  to  insure  tha t  the  information 

f e f l e c t s  a complete and up-to-date assesment of the  s ta te -of - the-ar t ,  d i r e c t  contact  

was made with major government and i n d u s t r i a l  i n s t a l l a t i o n s  which have performed r e -  

search o r  might have an i n t e r e s t  i n  r ad ia t ion  e f f e c t s  on l iqu id  propel lants .  

of about 30 ind iv idua ls  i n  15 f a c i l i t i e s  w e r e  contacted in a l l ,  during the  course 

of  the  program. 

A t o t a l  
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General Discussion of Radiation Ef fec t s  

on Propel lants  

Radiation Eneray Deposition 

Ionizing r ad ia t ion  t r a n s f e r s  i t s  energy t o  the  material traversed i n  

d i f f e r e n t  ways. Fast  charged p a r t i c l e s  t r a n s f e r  t h e i r  energy predominantly by 

inducing e l ec t ron ic  t r a n s i t i o n  of molecules i n  o r  near t h e i r  path;  f a s t  neutrons 

and y rays produce charged p a r t i c l e s  which a l s o  behave i n  t h i s  manner. 

t i t a t i v e  dependence of the  l i n e a r  r a t e  of energy transfer$: on the nature of the  

r a d i a t i o n  and the material  under i r r a d i a t i o n  are o f t en  of i n t e r e s t  i n  r ad ia t ion  

e f f e c t s  s tud ie s ,  Table 1 from Ref. 1 gives values of -dE/dx fo r  various kinds of 

The quan- 

r a d i a t i o n  i n  water t o  i l l u s t r a t e  the strong dependence of t h i s  parameter on 

r a d i a t i o n  type,  The r a d i a t i o n  environment seen by l i qu id  propel lants  on a space 

mission may include a l l  of these  types of r ad ia t ion .  

(1) TABLE 1. L.E.T. FOR DIFFERENT RADIATIONS 

Radiation L.E.T. i n  ev/A 
I---- -- 

0.01 M e V  e l ec t rons  

0.01 M e V  e l ec t rons  

1 MeV e l ec t rons  

0.23 

0.04 

0.02 

60c0 Y- r a d i a t  ion 0.02 

1 MeV protons 

10 MeV protons 

1 MeV alphas 

10 M e V  alphas 

2.8 

0.47 

26.4 

5.6 

-1 7 7 10B(n,1,5 Mev a)0.85 M e V  L i  

J: Linear E n e r K T r a n s f e r  (L.E.T.) i s  the d i f f e r e n t i a l  ra te  of l o s s  of energy per 

u n i t  length of the t r a c k  of an ionizing p a r t i c l e  
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Formation of Intermediates and Products 

As a r e s u l t  of energy deposit ion by ionizing r ad ia t ion  exci ted molecules, 

ions and e l ec t rons  are formed. 

chemical reac t ion ,  decompose t o  give r a d i c a l s  o r  s t a b l e  molecules, o r  react with o ther  

normal o r  exci ted molecules. Thus the re  can be competition between f i r s t  and second 

order r eac t ions  of exci ted molecules, which can give rise t o  dose-rate o r  L.E.T. e f f e c t s .  

Excited mglecules may lose  t h e i r  energy without 

* 
I n  measuring the  chemical e f f e c t s  of r ad ia t ion , fo r  instance the  G-value , 

one i s  concerned with the  o v e r a l l  e f f e c t  of r ad ia t ion  as i t  penetrates  the  substance 

and i t s  energy i s  d iss ipa ted .  

mechanisms i s  e s s e n t i a l  i n  understanding and extrapolat ing experimental da ta ,  i t  is 

t he  f i n a l  chemical products formed by r a d i a t i o n  which are of primary i n t e r e s t  here. 

Although some understanding of  r ad ia t ion  damage 

Radiation DamaEin  Liquid P rope l l an t s  

Radiation e f f e c t s  i n  the  propel lant  systems under consideration may be 

expected t o  manifest themselves i n  one o r  more of t he  following ways: 

(1) Production of v o l a t i l e  off-gases (leading t o  pressure buildup), 

(2) Radiation polymerization (leading t o  increase i n  v i s c o s i t y  o r  

s o l i d s  deposit ion) , 

(3 )  Radiation synthes is  of r eac t ive  chemical species (leading t o  

chemical composition changes, possible  detonable compounds, o r  

enhanced corrosion e f f e c t s ) .  

The f i r s t  of these  i s  by f a r  t he  most common i n  the  case of fue l s ,  due pr imari ly  t o  t h e i r  

tendency t o  form hydrogen gas.  In  the  following sec t ion ,  the  most c r i t i c a l  damage 

parameter i s  spec i f ied  f o r  each propel lant  i n  those cases where there  are s u f f i c i e n t  

d a t a  t o  show i t .  

- -- 
* The number of molecules formed o r  destroyed per 100 ev of energy deposited. 
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Dose r a t e  and L.E.T. e f f e c t s  may be important f o r  severa l  reasons; some 

of which are: 

(1) There may be d i f f e r e n t  orders  of intermediate  reac t ion  a t  

d i f f e r e n t  dose rates o r  L.E,T,'s leading t o  d i f f e r e n t  products,  

Some rad ia t ion  products may be chemically uns tab le  and spontaneously 

decompose a t  a rate f a s t  enough t o  prevent a s i g n i f i c a n t  concentra- 

t i o n  from building up over a period of time, 

(2) 

(3) Slow pos t - i r r ad ia t ion  chemical reac t ion  involving r ad io lys i s  

products may produce changes i n  chemical composition observable 

only a t  very low dose r a t e s  and long exposures. 

Radiation e f f e c t s  t e s t i n g  i s  o rd ina r i ly  ca r r i ed  out  a t  dose r a t e s  much higher than the  

propel lan t  w i l l  be subjec t  t o  under condi t ions of  use, 

should always be given t o  the  type  of s u b t l e  e f f e c t s  discussed here. 

reasons t o  be l i eve  t h a t  dose r a t e  o r  L.E.T. e f f e c t s  may be s i g n i f i c a n t  f o r  a p a r t i c u l a r  

propel lan t ,  t h i s  p o s s i b i l i t y  should be checked experimentally. 

Therefore, some considerat ion 

I f  there  ajje 

Sununary and Evaluation of Radiation 
Effec ts  Data 

Radiation e f f e c t s  da ta  on a l l  the fue l s  and oxid izers  surveyed a r e  presented 

i n  Tables 2 and 3 respect ively.  

i s  as follows: 

The s igni f icance  of tlie var ious e n t r i e s  i n  the  Table 

Columns 1. 2. and 3: The propel lan ts  a r e  grouped i n t o  chemically r e l a t ed  

c l a s s e s  and each composition i n  the c l a s s  i s  l i s t e d  separately.  

t o  r ad ia t ion  e f f e c t s  data on each composition a r e  found i n  the  bibliography. 

Column 4: 

References 

Here, the  r ad ia t ion  s tudies  a r e  r a t ed  according t o  r e l a t i v e  
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completeness of the  d a t a  obtained. 

i s  one which covers a range of r a d i a t i o n  types,  dose rates, temperatures, 

e tc .  A l imi ted  parametric study considers perhaps 2 or  3 parameters. 

A v e r i f i c a t i o n  tes t  involves subjecting the  sample t o  one type of r ad ia t ion  

a t  one dose ra te  t o  one dose l eve l .  Also, t he  types of r ad ia t ion  used i n  

A comprehensive parametric study 

the  indicated s tud ie s  i s  indicated.  

Column 5: The percent decomposition per  megarad (Mrad = 10 ergs/g) i s  

used as a convenient standard fo r  comparison and ca l cu la t ion .  The values 

given here have been derived from d i r e c t  measurements o r  they represent an 

upper l i m i t  estimated from the  da t a  which are ava i lab le .  

- Columns 6 and 7 :  The volume of gas formed i s  given i n  t e r m s  of m l  per 

8 

meqarad i n  column 6 .  The major off-gas components are l i s t e d  i n  column 7,  

where they have been i d e n t i f i e d ,  and other products may be formed t o  a 

lesser ex ten t ,  

Columns 8 and 9 :  Major l i q u i d  r ad io lys i s  products are l i s t e d  i n  column 

8 i n  cases where they have been iden t i f i ed  and o ther  spec ia l  r ad ia t ion  

e f f e c t s  are denoted i n  column 9 as observed. 

-- Column 10: The r ad ia t ion  e f f e c t ( s )  judged t o  present the  m o s t  se r ious  

engineering problems are given here. The judgment as t o  a s p e c i f i c  pro- 

p e l l a n t ' s  s u i t a b i l i t y  f o r  a p a r t i c u l a r  mission is  based on t h i s  "most 

c r i t i c a l "  damage parameter. 

Experimentally Observed Radiation E f f f e c t s  on Fuels  

The summary of r ad ia t ion  damage da ta  f o r  f u e l s  i s  found i n  Table 2. The f u e l s  

as a group are much more s e n s i t i v e  t o  r ad ia t ion  damage than are the oxid izers ,  and more 

of them have been subjected t o  r a d i a t i o n  t e s t i n g .  It w a s  found t h a t  t he re  are some d a t a  

on a l l  of those l i s t e d  i n  Table 2. The e f f e c t s  on each c lass  of f u e l s  are discussed 

below where individual differences and t rends  are pointed out .  
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Jlvdrocarbons. This c l a s s  of f u e l s  has been more in tens ive ly  s tudied than 

any a ther .  Although no d e f i n i t i v e  s tud ie s  of l i qu id  ethane and propane have been per- 

formed, the  da ta  ava i l ab le  from vapor phase s tud ie s  and work with l i qu id  methane and 

higher  hydrocarbons allow reasonable damage estimates t o  be made. 

hydrocarbons a r e  q u i t e  r e s i s t a n t  to  r ad ia t ion  decomposition. 

A s  a c l a s s ,  t he  

Ethylene i s  somewhat 

unique because i t  has  the  g r e a t e s t  tendency t o  form polymer, and a t  the  same t i m e ,  

y i e lds  the  least volume of  off-gas,  

&mines. Although ammonia i t s e l f  is  the  only f u e l  i n  t h i s  c l a s s  t h a t  has 

been s tudied extensively,  da ta  on gas formation are  ava i lab le  on a l l  of the amine 

fue l s .  

t h i s  c l a s s  of fue ls .  

It i s  obvious that there is a wide range of r ad ia t ion  damage s e n s i t i v i t y  i n  

Ammonia i s  an order  of  magnitude more r e s i s t a n t  t o  r ad ia t ion  

damage than the  methyl hydrazines, with hydrazine f a l l i n g  between these extremes. 

noted i n  the  t ab le ,  some radiat ion-surface e f f e c t s  have been observed i n  the  case  of 

As 

vapor phase i r r a d i a t i o n  of ammonia and hydrazine. This type of r eac t ion  could con- 

ceivably muse problems i n  case  these f u e l s  were s tored  f o r  extended t i m e s  with a high 

u l l age  i n  a radiation environment, 

There have been no comprehensive liquid-phase r ad ia t ion  

e f f e c t s  s tud ie s  on these  fue l s ,  The proof tests ind ica t e  t h a t  they a r e  more resistant 

t o  damage than the  methyl amines, however, and perhaps a r e  comparable i n  r ad ia t ion  r e s i s t anc  

t o  the  hydrocarbons. Neutron i r r a d i a t i o n  deser res  a spec ia l  considerat ion i n  t h i s  case. 

7 Boron is a good slow neutron absorber undergoing the  loB(n,p) Li react ion.  The energy 

7 re leased i n  t h i s  r eac t ion  i s  subs t an t i a l  (1.50 mev and 0.85 MeV L i  r e c o i l ) ,  and 

both the  a - p a r t i c l e  and the  L i  r e c o i l  a r e  high L.E.T. species deposi t ing a l a rge  amount 7 

of energy i n  a s h a r t  d i s t ance  (see Table 1). 

i n  the  boron hydrides so i t  i s  not  known whether t h i s  behavior could cause spec ia l  problems. 

There have been no s tud ie s  of L.E.T. e f f e c t s  
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piuuid Hydrogen. There can be no off-gas o r  complex molecule formation i n  

l i q u i d  hydrogen. The p o s s i b i l i t y  of  H-atom d i f fus ion  i n t o  tank wal l s  has been con- 

sidered.  (23) A r ad ia t ion  induced t r a n s i t i o n  from para t o  or tho  hydrogen has been 

observed. However, t h i s  is not  of  s ign i f icance  f o r  long space missions because the  

ortho hydrogen decomposes spontaneously back t o  the  para form i n  a r e l a t i v e l y  s h o r t  

t i m e .  (24) Thus, t h e  primary concern here i s  probably from rad ia t ion  heat ing,  which 

can be t r ea t ed  simply as a hea t  transfer problem, 

E X D e r i m e n t a l l Y  Observed Radiation Effec ts  on Oxidizers 

It was previously pointed out  t h a t  l i qu id  oxid izers  a r e  i n  general  less 

s e n s i t i v e  t o  r a d i a t i o n  damage than a r e  l i qu id  fue ls .  However, t h i s  may not  be t r u e  

f o r  a l l  fuel-oxidizer  combinations. I n  addi t ion ,  the  lack of  d e f i n i t i v e  radiatiioa 

e f f e c t s  da ta  f o r  several of t he  oxid izers  l i s t e d ' i n  Table 3 makes s p e c i f i c  comparisons 

d i f f i c u l t .  The information t h a t  i s  ava i l ab le  is discussed below. 

E l e m e n t a l  Oxidizers.  Off-gassing cannot occur i n  any of the  elemental 

ox id izers ,  so pressure  buildup i n  them should not  be a problem. 

the re  might conceivably be some a t t a c k  on tank sur faces  by short- l ived ions o r  atoms 

produced by rad ia t ion .  

s t a b l e  molecular species  could form, so t h a t  simple rad ia t ion  heat ing w i l l  probably 

be  the  only e f f e c t  o f  concern f n  the  bulk oxidizer .  

A t  h igher  dose r a t e s ,  

I n  the  case  of l i q u i d  f lou r ine ,  i t  is  unl ike ly  t h a t  any 

The r ad ia t ion  chemistry of  l i qu id  oxygen has  been s tudied q u i t e  extensively.  

As ind ica ted  i n  Table 3, the major o v e r a l l  r ad ia t ion  e f f e c t  is the  conversion of oxygen 

t o  ozone, 

i r r a d i a t e d  l i q u i d  oxygen, there  a r e  severa l  reasons why t h i s  w i l l  probably not  e f f e c t  

Although study has shown t h a t  a subs t an t i a l  buildup of ozone can occur i n  
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i t s  performance appreciably. 

oxygen, (30) so t h a t  i t  w i l l  tend t o  remain dispersed i n  solut ion.  

i t s e l f  i s  sens i t i ve  t o  r ad ia t ion  decomposition, (31) so t h a t  i t s  concentration cannot 

bu i ld  up inde f in i t e ly .  F ina l ly ,  tank materials can be chosen which are immune t o  

ozone a t tack .  

I n  the  f i r s t  place ozone i s  qu i t e  soluble  i n  l i qu id  

Secondly, ozone 

I n  FLOX there  might be a s m a l l  amount of OF produced by rad ia t ion .  However, 2 

t h i s  would not  be expected t o  cause any problems because i t  i s  probably soluble  i n  

the  propel lant .  

--- Fluoride Oxidizers. Ver i f ica t ion  Tests have been conducted on l i qu id  OF2, C1F3, 

and C103F. 

materials are apparently qu i t e  rad ia t ion  r e s i s t a n t ,  with perchloryl f luor ide  being 

probably the  least  r e s i s t a n t  of those tes ted .  It would c e r t a i n l y  be des i rab le  t o  have 

No information w a s  found on NF N2F4, N02F, and C1F5. A s  a c l a s s  these 3, 

d e f i n i t i v e  experimental da t a  f o r  t h i s  group because i t  includes some oxidizers  of 

grea t  i n t e r e s t  t o  the space program. 

-- Oxides. Suf f ic ien t  da t a  have been obtained i n  t h i s  case t o  prodict  t he  

nature  and ex ten t  of r ad ia t ion  damage with considerable confirlence. Nitrogen te t roxide  

appears t o  have good r ad ia t ion  res i s tance .  MON-10 would be expected t o  behave about 

t he  same; however, no reference w a s  found t o  any tes t  of t h i s  composition. Hydrogen 

peroxide, which i s  of doubtful i n t e r e s t  as a s tored propel lant  anyway, suffered much more 

r ad ia t ion  decomposition than did N204 .  
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ANALYSIS OF RADIATION EMIIRONMFST ON BOARD SPACE PROBES 
W I T H  AUXILIARY NUCLEAR POWER SOURCES 

To as ses s  the  r e l a t i v e  m e r i t  of  candidate propel lan ts  f o r  use i n  deep 

space missions on the  b a s i s  of r ad ia t ion  damage and/or threshold,  the type a s  w e l l  

a s  i n t e n s i t y  of r ad ia t ion  which the propel lan t  w i l l  encounter during the  l i f e t i m e  

of the  mission must be accura te ly  defined. In addi t ion  t o  var ious kinds of space 

r ad ia t ion  the  propel lan ts  t o  be u t i l i z e d  i n  nuclear-powered space probes w i l l  be 

subjected t o  a continuous f lux  of r ad ia t ion  which o r ig ina t e s  from the  nuclear  power 

source. Both on-board and ex terna l  sources of r ad ia t ion  a r e  t rea ted  i n  t h i s  sect ion.  

Probable TvDes and I n t e n s i t i e s  of Radiation from Nuclear Power 
Sources t o  be Ut i l ized  i n  Deep Space Missions 

Present  design plans include the  use of two d i s t i n c t  types of nuclear 

power sources depending on the  power l e v e l ,  l i f e t i m e ,  and o ther  s p e c i f i c  requirements 

of  the  space mission. The two types of power sources re fer red  t o  a r e  long-lived 

radioisotopes and nuclear  r eac to r s  of the  SNAP var i e ty .  Cha rac t e r i s t i c  r ad ia t ion  

emanating from these sources can vary widely with respec t  t o  type, i n t e n s i t y ,  and 

spectra .  It  is, therefore ,  necessary t o  d is t inguish  between the var ious types of 

r ad ia t ion  before  a comparative evaluat ion of t h e i r  r ad ia t ion  dose rate and corresponding 

r ad ia t ion  damage t o  propel lan ts  i s  made. 

Primary e f f o r t  i n  t h i s  area was d i rec ted  toward accurately def in ing  maximum 

dose l e v e l s  t o  be expected from various radioisotope fue l  mater ia l s  which a r e  candidates 

f o r  radioisotope power systems and from a typ ica l  nuclear  r eac to r  power source. 

l e a s t  one representa t ive  of each type of radioisotope fue l  has  been included i n  t h i s  

ana lys i s .  

At 

Selected candidate fue l s  include the  following: 
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2L4 
(a) Oxides of 238Pu and Cm; radioisotopes which decay by 

emission of w p a r t i c l e s ,  i.e., high energy He  nuc le i .  

@-par t ic les  w i l l  be completely absorbed within a s 

d i s t ance  i n  the  fue l ,  but  some high energy neutrons w i l l  be 

produced by nuclear  i n t e rac t ions  of the  V-particles.  These 

(cw,n) neutrons represent  the  major source of penet ra t ing  ex- 

ternal r ad ia t ion  of @-sources. 

The 

(b) "Sr, i n  the  form of SrTi03, decays by emission of R-particles 

o r  high energy e lec t rons .  

p a r t i c l e s ,  &radia t ion  a l s o  w i l l  be e s s e n t i a l l y  a l l  absorbed i n  

Although more penet ra t ing  than a- 

the  fuel .  However, when 8-par t ic les  a r e  slowed down by i n t e r -  

ac t ion  with atomic nuc le i ,  electromagnetic r ad ia t ion  ca l l ed  

bremmstrahlung is  emitted. 

the  major source of ex terna l  pene t ra t ing  r ad ia t ion  f o r  t h i s  fuel .  

6oCo, i n  the  me ta l l i c  form, decays by emission of @-and , p a d i a t i o n .  

This "braking radiat ion" represents  

(e) 

The l a t t e r  i s  penetrat ing electromagnetic rad ia t ion .  Hence, the  

ex terna l  r ad ia t ion  f i e l d  a r i s e s  a s  a r e s u l t  of the decay process 

i t s e l f .  

The radioisotope 238Pu, which i s  to  be used i n  the  SNAP-27, has received 

p a r t i c u l a r  a t t e n t i o n  although the  o the r  candidate radidisotope f u e l s  have a l s o  been 

considered as p o t e n t i a l  a u x i l i a r y  space power sources. Some of the  c h a r a c t e r i s t i c s  

of the  four radioisotopes considered f o r  use i n  space power sources a r e  given i n  

Table 4. 
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An adequate desc r ip t ion  of  a r ad ia t ion  source includes the  types of r ad ia t ion  

emitted as wel l  a s  the  i n t e n s i t i e s  and spec t ra  of the  emitted rad ia t ion .  

a l l s i g n i f i c a n t  impurities, whether decaying o r  increas ing  with t i m e ,  have been in- 

cluded and the  e f f e c t  t h a t  these  impur i t ies  have on the  o v e r a l l  sp 

of t he  major i so topes  a r e  recorded. 

In addi t ion ,  

trum and i n t e n s i t y  

TABLE 4. CHARACTERISTICS OF RqDIOISOToPES USED 
I N  HEAT SWRCES 

6oco Isotope 90sr 238Pu 244- 

Half-Life, Years 5.3 27.7 86 18 

Compound Form Metal SrTiOg PUO* cm203 

* cy Alpha, f3 Beta ,y G m ,  n neutron, x Bremstrahlung 

* From (a,n) r eac t ion  

Bases of Radiation Dose Estimates 

During t h i s  study the  r ad ia t ion  types,  spec t ra ,  i n t e n s i t i e s  and in tegra ted  

doses f o r  radioisotopes and nuclear r eac to r s  were determined on the bas i s  of  a source 

power l e v e l  of one thermal wat t  and source t o  dose-point separat ion d is tance  of one 

foot. 

as an unshielded point  source of  rad ia t ion .  

I n  making the est imates  given below the  radioisotope f u e l  has been considered 

This assumption allows a s t ra ightforward 

ca l cu la t ion  t o  be made of r ad ia t ion  

dis tance.  

dose r a t e  es t imates  w i l l  always be somewhat higher  than would be t r u e  f o r  a r e a l  source. 

This, i n  e f f e c t ,  provides a worst case  estimate;  t h a t  is, an est imate  of the  highest  dose 

l eve l s  a s  a funct ion of source power and separat ion 

However, s ince  se l f - sh i e ld ing  by the  source mater ia l  i t s e l f  i s  disregarded, 
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which could be del ivered from a given radioisotope fuel .  Dose r a t e s  expected from a 

nucleai: r eac to r  source a r e  based on data derived from r e a l  systems, i.e., they take 

i n t o  account s e l f - sh i e ld ing ,  bu t  not ex terna l  shielding.  The e f f e c t  of se l f - sh ie ld ing  

and source geometry a r e  discussed i n  a l a t e r  p a r t  of t h i s  sec t ion  of the  repor t .  

Radiation doses a r e  expressed i n  RAD per  t h e m 1  watt  a t  a dis tance  of one 

foot  from the  one watt  source. These dose r a t e s  were determined by in t eg ra t ing  the  

following function: 

00 

y Dose Rate = f S(E)y*D(E)dE 
0 

where: S(E) = Radiation flux-to-dose r a t e  conversion 
funct ion f o r  y-radiat ion (Ref. 32) 

D(E) = Radiation f lux  a s  a function of energy 
(see,  for  example, Figures 2 o r  3 )  

I n  the  case  of neutron sources,dose r a t e s  a r e  commonly given i n  REM, a 

b io logica l  dose u n i t .  REM Dose i s  equal to  the RAD dose t i m e s  the Relat ive Biological  

Effect iveness ,  o r  RBE fac tor .  I n  general the  RBE v a r i e s  with energy. Therefore, to  

convert  in tegra ted  neutron doses i n  REM to  RAD doses, one must d iv ide  by the energy de- 

pendent RBE fac tor .  
OD 

Neutron Dose Rate = f S(E)*D(E)dE 
O RBE(E) 

where: S(E), = Neutron flux-to-REM dose r a t e  
conversion funct ion (Ref. 32 )  

D(E) = Neutron Flux as  a funct ion of energy 
(see,  €or example,Figure 1) 

R&E(E) = Energy dependent RBE f ac to r  (Ref .  32) 
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Analys i s  of Individual Candidate Power Sources 

(33) 
2. The integrated neutron and gamma f luxes of the plutonium oxide 2 3 8 ~ u ~  

f u e l  a r e  shown i n  Figures 1 and 2 f o r  periods of 1, 2.5, and 5 years,  

of 238Pu, a t r ace  impurity, 

cay chain., 

is e a s i l y  seen i n  Figure 2. 

determined from the  spectra  of Figures 1 and 2 by the procedure described above and 

a r e  presented i n  Table 5, 

I n  the case 
236 

Pu, forms 208T1 (a g a m  e m i t t e r )  through a long de- 

The increasing contr ibut ion from the buildup of *08T1 2.6 MeV y-ac t iv i ty  

The absorbed doses from neutron and gamma rad ia t ion  w e r e  

cm203.(344) The neutron and gamma spectra  f o r  Cm 0 have been determined but  2 3  

w i l l  not be included i n t h i s  report .  

i n  Table 5 for each of the t i m e  i n t e rva l s  studied. 

However, unc lass i f ied  dose r a t e  information appears 

(35) 
3. The bremstrahlung f lux  was calculated f o r  the absorption of the "SrTi0 

decay beta p a r t i c l e s  from strontium-yttrium-90 i n  the strontium titanate (SrTi03) source. 

Bremmstrahlung spectra  determined f o r  periods of 1.0, 2.5, and 5.0 years a r e  shown i n  

Figure 3. The l a t t e r  spectra  were used t o  determine the  integrated absorbed dose f o r  

the three  t i m e  i n t e rva l s  (see Table 5 ) .  

beta p a r t i c l e s  are absorbed within the hea t  source. This assumption leads to  somewhat 

high dose r a t e  estimates f o r  l a rge r  Sr  sources s ince  the high 2 of the heat  source y i e lds  

a higher energy bremmstrahlung spectra  than the generally lower 2 supporting s t ruc tures .  

This dose was calculated assuming tha t  a l l  

Another strontium isotope,  89Sr, i s  always present i n i t i a l l y  i n  "Sr fue l ,  and 

i t s  contr ibut ion o the dose r a t e  has been included, However, contr ibut ion from the 

89Sr diminishes v i t h  t i m e  s ince the  isotope has a 51-day ha l f  l i f e  compared with a ha l f  

l i f e  cf 28 years f o r  S r .  90 
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(35) 
6oCo (Me ta  1) . Cobalt-60 decays by emission of a 8-par t ic le ,  followed by 

60 a 1.17 and a 1.33 MeV garmna ray from each 

bremmktrahlung do not contribute s ign i f icant ly  to  the external dose rate .  

Co atom. The low energy %rays and 

The t o t a l  

integrated f lux f o r  each of the gamma rays w i l l ,  of course, be the same and a r e  given 

below as a function of t i m e .  

sorbed doses given i n  Table 5. 

These f lux  data were used to  determine the integrated ab- 

2 flux. Photonslcm -Watt a t  1 f t ,  

Energy-Mev 1.0 yr. 2.5 yr. 5.0 y r  

16 

16 
1.17 6.04 x 1015 1.37 x 10 2.39 x 10 

1.33 6.04 x 1015 1.37 x 10 l6 2.39 x 10 

puclear Reactor (36) 

determined based on the SNAP-8 reactor.  

reactor  a r e  typical ,  a t  a given power leve l ,  of those expected from other  SNAP reactors  

such as the SNAP-2, 10, o r  50. 

and 5.0 year missions a r e  shown i n  Figures 4 and 5. 

Table 5 l ists  the integrated reactor  doses along with the radiat ion dose data fo r  

isotope sources. 

Probable doses from a reactor  power source have been 

The radiat ion spectrum and doses from t h i s  

The integrated gamma and neutron fluxes for  1.0, 2.5, 

For the purpose of comparison; 
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TABLE 5. INTEGRATED DOSES FROM VARIOUS SOURCES 

Source 
.Dose (Rads/Watt a t  1 foot )  

Radiation 1.0 Year 2.5 Year 5.0 Year 

PUO2 238 

244m203 

Neutron 
Gamma 

(Total) 

Neutron 
Gamma 

(Tot a 1) 

Bremms t r ah  lung "SrTi03 

6oCo (Metal) 

React o r  

Gamma 

Neutron 
Gamma 

(Total)  

6.0 
0.37 
6.4 

32 
23 
55 

1.5 x 10 5 

6 7.3 x 10 

2.9 x lo6  
5.9 x 106 
8.8 x 106 

15 

16 
0.91 

79 

1.4 x 10 

3.8 x 10 

57 2 

5 

7 1.6 x 10 

7.4 x 106 
1.5 107 
2.2  107 

30 

32 
1.8 

1.6 x lo2 

2 . 8  x lo2 
5 7.5 x 10 

1.2 x 102 

7 2 .8  x. 10 

1.5 107 
2.9 107 
4 . 4  107 

Application of Radiation Dose Data t o  Postulated Power Source 

The dose rates l i s t e d  i n  Table 5 may be extrapolated t o  dose rates f o r  

higher thermal power sources a t  various dis tances  by multiplying by the  r a t i o :  

Power (in wat ts)  

Distance2 ( i n  f e e t )  . 

For example, the  t o t a l  maximum dose from a typ ica l  SNAP-27 source containing the 

equivalent of a ki lowatt  of 238Pu02 radioisotope fue l ,  can be found by multiplying 

the  sum of the  neutron and gamma contr ibut ions by the power l eve l  i n  watts.  The r e s u l t  
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w i l l  be the  dose in tegra ted  over the  chosen t i m e  span. Thus, f o r  the k i lowat t  source 

and a 2.5 year mission, the  in tegra ted  dose a t  one foot  would be estimated a s  

1.6 x 10 rads.  

square of  the  d is tance  re la t ionship .  

4 
The estimated dose a t  any o ther  d i s t ance  can be found by the  inverse  

It was emphasized above t h a t  these da ta ,  with the exception of the  r eac to r  

da ta ,  are computed on the  b a s i s  of point  sources of r ad ia t ion  and, therefore ,  do not  

account f o r  se l f - sh ie ld ing  within the  source mater ia l .  Neglect of se l f - sh ie ld ing  i n  

the  source o r d i n a r i l y  r e s u l t s  i n  a ca lcu la ted  r ad ia t ion  dose r a t e  which i s  too high. 

This r e s u l t  i s  shown graphica l ly  i n  Figure 6 where the  dose r a t e  from a "SrTiO3 source 

is p lo t t ed  as a funct ion of power l eve l  for  both the  unshielded ( i . e . ,  po in t  source) 

and se l f - sh ie lded  cases .  (37) 
be 

A t  a thermal power l e v e l  of 20 kw , the  point  source 

assumption i s  seen t o  resul t  i n  an overestimate of the  r ad ia t ion  dose r a t e  by a f ac to r  

of 1.6. 

The da ta  for  ''5, a re  probably typ ica l ,  and i l l u s t r a t e  the fac t  t h a t  the  dose 

r a t e  es t imates  given i n  Table 5 for  the  various radioisotope power sources a r e  con- 

serva t i v e  . 
The geometry of a p a r t i c u l a r  power source is  another e f f e c t  not s p e c i f i c a l l y  

considered i n  t h i s  screening study. However, d i f fe rences  i n  source configurat ion can 

s i g n i f i c a n t l y  e f f e c t  ex terna l  r ad ia t ion  l eve l s  around an ac tua l  r ad ia t ion  heat source. 

I n  addi t ion ,  s ince  r e a l  power sources a r e  no t ,  i n  general ,  pe r f ec t ly  spher ica l  i n  

shape, d i f f e r e n t  o r i en ta t ions  of  the  power source with respec t  t o  a p a r t i c u l a r  absorber 

w i l l  lead to  d i f f e r e n t  r ad ia t ion  dose r a t e s  a t  the same d is tance  from the  source center .  

More re f ined  determination of the  r ad ia t ion  environment around a real power source should 

consider a l l  s i g n i f i c a n t  per turbat ions t o  the  r ad ia t ion  f i e l d .  It should be c l e a r  from 

t h i s  b r i e f  discussion t h a t  accura te  assesment of r ad ia t ion  dose r a t e s  from a po ten t i a l  

aux i l i a ry  power source requi res  knowledge of the configurat ion of the spacecraf t  a s  wel l  

a s  t h a t  of the power source. 

* This value i s  equivalent  to  1 kw(e) i f  thermoelectric conversion 
i s  assumed a t  5 percent eff ic iency.  
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Estimate of Space Radiation Dose t o  Propel lants  

The penet ra t ing  r ad ia t ion  environment i n  space cons i s t s  of three major 

components: 

en trapped rad ia t ion .  (389 39) 

g a l a c t i c  cosmic rays,  s o l a r  cosmic rays,  and the  so-called Van Allen 

However, the  i n t e n s i t y  of g a l a c t i c  cosmic rays is small 

(-2 par t ic les /cm 2 sec) and the  estimated dase r a t e  i n  f r e e  space i s  about 45 mR per day. (38) 

The Van Allen r ad ia t ion  i s  found only i n  t h e  immediate v i c i n i t y  of the e a r t h  o r ,  i n  

general ,  around a p lane t  having a subs t an t i a l  magnetic fi.eld. Thus, the  s o l a r  cosmic 

rays  are the  major source of pene t ra t ing  r ad ia t ion  outs ide  the e a r t h ' s  magnetosphere. 

Solar  cosmic rays are high-energy p a r t i c l e s  emitted when dis turbances of 

poorly understood o r i g i n  -- s o l a r  f l a r e  events 0-  take place on the  sun. The p a r t i c l e  

f lux  i s  composed of protons,  a varying number of alpha p a r t i c l e s  and a small admixture 

of heavier  nuc le i ;  however, f o r  the  purpose of computing dose, o f t en  only protons a r e  

considered. 

A l l  a spec ts  of the  s o l a r  proton problem have received in t ens ive  study during 

the  l a s t  few years because of the  p o t e n t i a l  hazard t h i s  r ad ia t ion  presents  t o  manned 

space f l i g h t .  

t h i s  source during extended in t e rp l ane ta ry  space missions. 

here  a r e  based on The Lewis  Proton Shielding Code (LSPC) (40) as  applied by Sco t t  and 

As a r e s u l t ,  f a i r  es t imates  can be made of the  dose t o  be expected from 

The dose est imates  presented 

(41-43) A l l s m i l l e r  . 
Because the  i n t e n s f t y  and energy spectrum of s o l a r  protons vary markedly from 

event to event ,  a s t a t i s t i c a l  ana lys i s  of the  s o l a r  proton events fo r  the purposes of 

making dose estimates was ca r r i ed  out  by Modisette and co-workers. (44 )  

which i s  used by Sco t t ,  (43)  the  i n t e g r a l  proton spectrum may be represented a s  

I n  t h i s  model, 
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where : 

Jp(>E) - number of protons per un i t  area i n  the  f l a r e  having 
k i n e t i c  energy g rea t e r  than E ,  

P(E) = r i g i d i t y ,  

= pc/Ze, 

p = p a r t i c l e  momentum? 

c = speed of  l i g h t ,  

2 = charge number (1 f o r  pro tons)?  

e = e lec t ron ic  charge 

Jo,Po = parameters which character ize  a p a r t i c u l a r  f l a r e .  

Modisette el- a l .  (44) give values of  t he  parameters J and Po fo r  a 3arge 
0 

number of f l a r e s .  They f ind  t h a t  P v a r i e s  between 50 and 200 MV and t h a t  t h e  t o t a l  

6 9 number of protons with energy g rea t e r  than 30 MeV v a r i e s  from 10 protons/cm2 t o  $0 

protons/cm . 

0 

2 

Fortunately,  t he  so l a r  f l a r e  proton f l u x  f a l l s  o f f  r ap id ly  with increasing 

energy, and thus a modest amount of shielding d r a s t i c a l l y  reduces the  s o l a r  proton dose. 

Th i s  i s  i l l u s t r a t e d  by the  d a t a  i n  Table 6 from Ref. 4 3 .  

TABLE 6.  PROTON DOSE FROM SOLAR PROTONS 
OF DIFFERENT MAGNETIC RIGIDITIES 

** * 
Shield Thickness Dose (rad pe r  Flare)  

Po = 195 MY Po = 50 MV g/cm2 AI 

0 
5 

10 
20 
50 

100 

36 20 479 
24.6 8 6 . 3  
4.0 47.9 
0.53 23.5 
0.12 7 .0  
0.06 2.1 

- --- * lo9 3 / c m  2 /F la re  

** g/cm (Al) x 0.146 = inches (Al) 
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As a "worst case" approximation, assume that there  a r e  f i v e  major s o l a r  

f l a r e s  a year; each containing protons with the  maximum magnetic r i g i d i t y  and i n t e n s i t y  

of Modisette's model. 

5 gm/cm A 1  sh ie ld ing  (e.&., equal t o  1/8" A 1  meteroid bumper -1- 11'8" A I  tank w a l l  

C 2" B2H6) would be <SO0 rads.  

t o  a s tored  l i qu id  propel lan t  by s o l a r  protons w i l l  no t  present  a s i g n i f i c a n t  problem 

s ince  no more than about 10 major s o l a r  f l a r e s  per  year of a l l  types a r e  expected even 

during a period of s o l a r  maximum, 

It can be seen from Table 6 t h a t  the  t o t a l  dose per  year behind 
2 

From an engineering s tandpoint ,  the  dose del ivered 

(38) 

SUMMARY OF PROPELLANT RADIATION DAMAGE AS A 
FUNCTION OF AUXILIARY POWER SOURCE TYPE AND MISSION 

Non-Condensable Gases Formed durinp, Propel lant  Radiolysis 

I n  general ,  the  most s i g n i f i c a n t  r ad ia t ion  damage problem from an engineering 

standpoint i s  probably the  pressure buildup to be expected from rad ia t ion  formation of 

non-condensable gases. 

f u e l  a r e  l i s t e d  i n  Table 2. 

conta in  hydrogen. 

and methane may be given o f €  i f  t he  f u e l  contains  carbon. 

The major components of radiation-produced off-gas  from each 

Hydrogen gas w i l l  be always present  because a l l  the  f u e l s  

I n  addi t ion ,  ni t rogen i s  connnonly formed from i r r a d i a t i o n  of  amines, 

The r e l a t i v e  s e n s i t i v i t y  of various propel lan ts  toward r a d i o l y t i c  gas 

formation i s  shown i n  Figure 7. These a r e  the  compositions where s u f f i c i e n t  data  a r e  

ava i l ab le  t o  make a reasonable es t imate  of t h i s  property i n  those cases  where i t  may be 

a problem. It w a s  previously pointed out t h a t  the elemental l iqu id  propel lants ;  i.e.., 

H2, F2, 02, would not  be expected t o  form non-condensable gases under i r r a d i a t i o n .  

An est imate  i s  made i n  Table 7 of the expected amount of non-condensable 

gas formed during a year ' s  mission using 3 d i f f e r e n t  radioisotope power sources a t  

s p e c i f i c  power l eve l s .  The r ad ia t ion  doses f o r  a 238Pu02, a 244Cm203 and a g0SrTi03 
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TABLE 7. VARIOUS PROPELLANTS 
BY Pu, 

Estimated Unit Volume of Off-Gas 
Per Unit Volume of Liquid Per Year 

(2 1 
9 0 ~  rTio3 238 (1) 2 44 (1) 

Propellant m02 9 O 3  

Methane, CH 

Ethane C2H6 

Propane, C H 
Ethylene, C2H4 
Ammonia, NH3 
Hydrazine, 

MMH, CH3NHNH2 

4 

3 8  

N2H4 

U D m  (CH312m2 
DIEN (H2NC%CH2)2NH 
Aerozine 

HYdPe 
Diborane, B2H6 (6) 
Pentaborane, B5H9 (6) 

N2 '4 
C103F 

< .01 

< .01 
< .01 
< .005(3) 
< .005 
< .02 
< .03 
< .03 
< .02 

< .03 
< .03 
< .02 
< .02 

< .001 

< .02 

-0.05 

-0.06 
-0 06 
N O .  02 (4) 
a. 02 
N O .  1 
-0.25 

-0.25 
-0.1 

-0.2 
-0.2 

-0.1 
N O .  1 
< 0.01 
N O .  1 

1.0 

1.5 

1.5 
0.5(5) 

0.5 
3.0 

6.7 
6.7 
3.3 

5.5 
5.5 

1.2 

1.5 
-0.1 

3.0 
~~~ ~ 

(1) 200,000 watt (th) source at 1 foot (Equivalent to 10 KW(e) at 
5 
24'Cm703 - 1.1 x 106 rad. ercent conversion efficiency) Dose: 238pu02 - 1.3 x lo5 rad; 

(2) 2 000 watt (th) source at 1 meter (3.25 feet) Dose: 
9ASrTi0 - 3 x 107 rad. 3 

(3) An estimated 5 x g polymer also formed per gram fuel. 

(4) An estimated 4 x 10-4 g polymer also formed per gram fuel. 
(5) An Estimated .01 g polymer also formed per gram fuel. 
(6) Doses in Table 5 from 238P~ and 244Cm have been multiplied by 2 

7 to account for energy deposited in these fuels by the 1 0 ~ ( n , ~ )  Li 
reaction. (See Table 1) 
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source are estimated from the  da ta  given i n  Table 5, assuming no se l f - sh ie ld ing  or 

ex te rna l  shielding.  Since se l f - sh i e ld ing  w i l l  be s ign i f i can t  i n  a l l  of these sources 

a t  the  power l eve l s  spec i f ied ,  (see fo r  example, Figure 6 ) ,  the  estimates would be 

expected t o  be too high. It can be concluded t h a t  t he  a-source should not cause 

s ign i f i can t  problems even a t  power l eve l s  corresponding t o  10 KW(e) f o r  5 year missions. 

I n  the  case of the  'OS, @-source, the estimates i n  Table 7 i nd ica t e  t h a t  power sources 

i n  the  range of 100 wat ts  (e) might present  problems f o r  the more rad ia t ion-sens i t ive  

fue l s .  Larger "Sr sources would probably requi re  some externa l  r ad ia t ion  shielding.  

It i s  not f eas ib l e  t o  make est imates  on the use of unshielded 'OCo o r  nuclear reac tor  

sources because t h e i r  r ad ia t ion  output i s  too high. Projected appl ica t ions  of such 

power sources w i l l  c e r t a i n l y  requi re  de t a i l ed  considerat ion of sh ie ld ing  and spacecraf t  

configurat ion.  

Radiation Heating of Propel lants  

Most of the energy deposited i n  any material by r ad ia t ion  w i l l  eventual ly  

appear as heat .  A t  low dose rates the  amount of heat involved i s  so s m a l l  t h a t  it can 

usua l ly  be neglected. However, a t  high r ad ia t ion  dose rates, r ad ia t ion  heating may 

present  s ign i f i can t  design problems. In  the case of the  propel lan ts  l i s t e d  i n  Table 7 ,  

chemical changes caused by r ad ia t ion  w i l l  lead t o  s ign i f i can t  degradation of performance 

long before heating e f f e c t s  themselves would become important. With elemental f u e l s  and 

oxid izers  such as H2 o r  F2, on the  o ther  hand, it i s  poss ib le  t h a t  r ad ia t ion  heating may 

be the most se r ious  engineering problem. However, as mentioned before,  r ad ia t ion  heating 

w i l l  only be s ign i f i can t  a t  r e l a t i v e l y  high dose rates, such as might be encountered 

from nuclear reac tor  power sources. Typical heating rates f o r  var ious dose rates are 

shown below. 
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TABLE 8. ESTIMATED HEAT DEPOSITION RATES IN FUELS 
FROM VARIOUS RADIATION HEAT SOURCES 

Radiation Heat Sources 

238~u~2 244h203 ’OS, 6oco Reactor 

Dose/Year , (Rad) (a) 6.4 6 55 1.3 x 10 7.3 x 10 8.8 x 10 5 

5.7 10-l~ 3.8 4.4 10 -lo 2.9 x 5.0 x (b ) Heat Input : 

ca 1 / g-hr 
Watt.at 1 foot 

(a) From Table 5. 

(b) To convert to Btu/lb-hr 2 multiply by 1.5 x 10 . 
Watt at 1 foot 

Table 8 summarizes the approximate heat deposition rates to be expected in liquid 

fuels from the various nuclear heat sources discussed in the preceding section of this 

report. 

various materials from neutron-and y-irradiation. 

heating rates in polyethylene whose elemental composition is similar to that of hydrogen 

containing fuels. 

These data are taken from Reference 45 which gives heat deposition rates in 

The neutron values are based on the 

y-heating rates are relatively insensitive to variations in composition. 
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--- Miscellaneous Damage Effects 

Radiation Polymerization 

Ethylene is the only fuel where polymerization is expected to be a problem. 

Vapor phase radiation polymerization of ethylene has been extensively studied and has 

been found to proceed very rapidly under some conditions. In contrast, liquid phase 

polymerization is very slow as indicated in Table 2.  However, even a relatively small 

amount of a high polymer like polyethylene might precipitate out and clog injector 

orifices, valves, etc. Although, it is impossible to make a quantitative estimate 

concerning the relative dose above which this problem would become serious, polymer- 

ization may well represent the major radiation damage problem in ethylene. 

Formation of Reactive Chemical Species 

The formation of ozone in liquid oxygen has already been discussed. There 

have been other examples of this type of behavior, particularly in the case of the 

amine fuels, 

in liquid ammonia''') and evidence for some unidentified species was noted in a 

For example, small amounts of hydrazoic acid, HN3, were observed to form 

radiation study on hydrazine(13). However, it is doubtful that this phenomenon could 

lead to serious problems in fuel storage systems because such reactive products 

ordinarily form at rates orders of magnitude lower than does non-condensable gas, for 

examp le. 
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RECOMMENDATIONS FOR FUTURE RESEARCH 
--_I__ 

Radiation Shielding Studies - 
It w a s  concluded i n  the  preceeding sec t ion  t h a t  r ad ia t ion  emitted from 

a-heat  sources would not be expected t o  se r ious ly  damage s tored  l i q u i d  propellants.  

However, parametric shielding s tud ie s  may be des i r ab le  f o r  l a rge r  a-heat  sources 

t o  provide design d a t a  f o r  space c r a f t  where o ther  r a d i a t i o n  s e n s i t i v e  components and/or 

instruments are present.  

shielding with optimum weight and configuration. 

necessary p r i o r  t o  spacecraf t  design i f  use of la rge  'OS,, 

were considered. Possible  use of the  fue l  as sh ie ld  material should be considered. 

These s tud ie s  would be aimed a t  providing d a t a  f o r  design of 

Such sh ie ld ing  s tud ie s  would be 

60 Co, or  r eac to r  power sources 

-- Radiation Research onLiqu id  Propel lants  

Research areas where d e f i n i t i v e  da t a  are lacking have been mentioned i n  

various sec t ions  of t h i s  r epor t .  Some of the  areas where addi t ional  research would 

be des i r ab le  are the  following: 

More complete r a d i a t i o n  e f f e c t s  da t a  are needed f o r  boron hydride 

f u e l s ,  f l uo r ide  oxid izers ,  and l i qu id  ethylene before one can estimate 

with reasonable c e r t a i n t y  the  s torage  l i f e  of these  propel lants  i n  

r a d i a t i o n  f i e l d s .  

More d e f i n i t i v e  study of neutron e f f e c t s  on boron hydride f u e l s  i s  

needed t o  a s c e r t a i n  what problems may be r a i sed  by the  "B(n,ol) 

reac t ion .  

It  would be des i r ab le  t o  ca r ry  out long t e r m  s torage  tests of propel lant  

systems a t  r a d i a t i o n  dose rates more comparable t o  those expected on an 

ac tua l  spacecraf t .  

7 L i  
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